lunes, 22 de octubre de 2012

RESUMEN 8 COMPLETO UNIDAD 4 DE REACCIONES QUIMICAS




4.1 Combinación de reacciones químicas
Una reacción química consiste en el cambio de una o más sustancias en otra(s).  Los reactantes son las sustancias involucradas al inicio de la reacción y los productos son las sustancias que resultan de la transformación.  En una ecuación química que describe una reacción, los reactantes, representados por sus fórmulas o símbolos, se ubican a la izquierda de una flecha; y posterior a la flecha,  se escriben los productos, igualmente simbolizados. En una ecuación se puede indicar los estados físicos de las sustancias involucradas de la manera siguiente: (s) para sólido, (l) para líquido, (g) para gaseoso y (ac) para soluciones acuosas.  Los catalizadores, temperaturas o condiciones especiales deben especificarse encima de la flecha.

Tipos de Reacciones Químicas
Las reacciones químicas pueden clasificarse de manera sencilla en cinco grandes grupos.  Existen otras clasificaciones, pero para predicción de los productos de una reacción, esta clasificación es la más útil.
Reacciones de Síntesis o Composición
En estas reacciones, dos o más elementos o compuestos se combinan, resultando en un solo producto.
Síntesis Química: la combinación de dos o más sustancias para formar un solo compuesto.

A +   B à C
(Donde A y B pueden ser elementos o compuestos)

Ejemplo: Escriba la reacción de síntesis entre el aluminio y el oxígeno.

Solución: Dos elementos se combinarán para formar el compuesto binario correspondiente.  En este caso, el aluminio y el oxígeno formarán el óxido de aluminio.  La ecuación que representa la reacción es la siguiente:

4 Al (s) +  3 O2 (g) à  2 Al2O3 (s)
Nota: Es importante recordar los elementos que son diatómicos, los cuales se escriben con un subíndice de 2 cuando no se encuentran combinados y participan en una reacción.  Estos son el hidrógeno, nitrógeno, oxígeno, flúor, cloro, bromo y el  yodo.
Reacciones de Descomposición o Análisis
Estas reacciones son inversas a la síntesis y son aquellas en la cuales se forman dos o más productos a partir de un solo reactante, usualmente con la ayuda del calor o la electricidad.
Descomposición Química: la formación de dos o más sustancias a partir de un solo compuesto.

A à  B + C
(Donde B y C pueden ser elementos o compuestos)

Ejemplo: Escriba la ecuación que representa la descomposición del óxido de mercurio (II).

Solución: Un compuesto binario se descompone en los elementos que lo conforman.  En este caso, el óxido de mercurio (II) se descompone para formar los elementos mercurio y oxígeno. La ecuación que representa la reacción es la siguiente:

2 HgO (s) à  2 Hg (l)  + O2 (g)

Reacciones de Desplazamiento o Sustitución Sencilla
Estas reacciones son aquellas en las cuales un átomo toma el lugar de otro similar pero menos activo en un compuesto.  En general, los metales reemplazan metales (o al hidrógeno de un ácido) y los no metales reemplazan no metales.  La actividad de los metales es la siguiente, en orden de mayor actividad a menor actividad: Li, K, Na, Ba, Ca, Mg, Al, Zn, Fe, Cd, Ni, Sn, Pb, (H), Cu, Hg, Ag, Au.  El orden de actividad de los no metales mas comunes es el siguiente:  F, O, Cl, Br, I, siendo el flúor el más activo.
Desplazamiento Químico: un elemento reemplaza a otro similar y menos activo en un compuesto.

AB + C à  CB + A   ó   AB + C  à  AC + B
(Dónde C es un elemento más activo que un metal A o un no metal B)
Ejemplo: Escriba la reacción entre el magnesio y una solución de sulfato de cobre (II).

Solución:El magnesio es un metal más activo que el cobre y por tanto, lo reemplazará en el compuesto, formando sulfato de magnesio.  A la vez, el cobre queda en su estado libre como otro producto de la reacción.   La ecuación que representa la reacción es la siguiente:

Mg (s) +  CuSO4 (ac) à  MgSO4 (ac)  +  Cu (s)

Reacciones de Doble Desplazamiento o Intercambio
Estas reacciones son aquellas en las cuales el ión positivo (catión) de un compuesto se combina con el ión negativo (anión) del otro y viceversa, habiendo así un intercambio de átomos entre los reactantes.  En general, estas reacciones ocurren en solución, es decir, que al menos uno de los reactantes debe estar en solución acuosa.
Doble Desplazamiento Químico: los reactantes intercambian átomos – el catión de uno se combina con el anión del otro y viceversa.
AB + CD à  AD + CB
Solución: En esta reacción, la plata reemplaza al hidrógeno del ácido, formando cloruro de plata.  Al mismo tiempo, el hidrógeno reemplaza a la plata, formando ácido nítrico con el nitrato.  La ecuación que representa la reacción es la siguiente:
AgNO3 (ac) +  HCl (ac) à  HNO3 (ac)  +  AgCl (s)

Reacciones de Naturalización
Estas reacciones son de doble desplazamiento o intercambio.  Su particularidad es que  ocurren entre un ácido y una base y los productos de la reacción son agua y una sal formada por el catión de la base y el anión del ácido. Por ejemplo, la reacción entre el ácido sulfúrico y el hidróxido de sodio resulta en la formación de agua y sulfato de sodio.  La ecuación que representa esta reacción es la siguiente:  
H2SO4 (ac) +  2 NaOH (ac) à  2 H2O (l)  +  Na2SO4 (ac)

Reacciones de Combustión
Estas reacciones ocurren cuando un hidrocarburo orgánico (un compuesto que contiene carbono e hidrógeno) se combina con el oxígeno, formando agua y dióxido de carbono como productos de la reacción y liberando grandes cantidades de energía.  Las reacciones de combustión son esenciales para la vida, ya que la respiración celular es una de ellas.
Combustión: un hidrocarburo orgánico reacciona con el oxígeno para producir agua y dióxido de carbono.
hidrocarburo + O2 à  H2O + CO2
Ejemplo 1: Escriba la ecuación que representa la reacción de combustión de la glucosa, el azúcar sanguíneo (C6H12O6).

Solución: En esta reacción, la glucosa es un hidrocarburo que reacciona con el oxígeno, resultando en los productos de la combustión – el agua y el dióxido de carbono. La ecuación que representa la reacción es la siguiente:
C6H12O6  +  O2  à  H2O  +  CO2



4.2 Descomposición de reacciones químicas
Reacciones de descomposición o análisis
En una reacción de descomposición, una sola sustancia se descompone o se rompe, produciendo dos o más sustancias distintas. A este tipo de reacciones se le puede considerar como el inverso de las reacciones de combinación. El material inicial debe ser un compuesto y los productos pueden ser elementos o compuestos. Generalmente se necesita calor para que ocurra la reacción. La forma general de estas ecuaciones es la siguiente:

         AB       A + B
Reacciones de Descomposición: Consiste en el desdoblamiento o división de una sustancia o molécula en otras substancias más simples, por efecto de un agente externo, como el calor, la electricidad, etc.:

1. 2H2O + (Calor) ---> 2H2 + O2

2. Mn2O3 + (Calor) --> Mn2 + O

3. H2S + (Calor) ---> H2 + S2

4. Al4 (SiO4)3 + (Calor) ---> SiO2 + Al2O3

5. Fe2 (SO4)3 + (Calor) ---> SO2 + Fe2O3

6. Sn (OH)4 + (Calor) ---> SnO4 - OH

7. H3BO3 + (Calor) ---> 3H + B2O3

8. H2O + (Electricidad) ---> H2 + O2

9. H4P2O7 + (Calor) --> P2O5 + 2H2O

10. CaCO3 + (Calor) ---> CO2 + CaO
4.3 Sustitución
Una reacción de sustitución es aquella donde un átomo o grupo en un compuesto químico es sustituido por otro átomo o grupo.
Reacciones de Síntesis: Llamadas también de composición, que consiste en la unión de dos o más elementos o sustancias para formar un nuevo compuesto, ejemplos.-

1. H2 (Hidrógeno) + Cl2(Cloro) ---> HCl (Ácido clorhídrico)

2. Zn (Zinc) + O(Oxigeno) ---> ZnO(oxido de zinc)

3. Li2O (Oxido de Litio) + H2O(agua) --> L2(OH) Hidróxido de Litio

4. CO2 (Anhídrido carbónico) + CaO(Oxido de Calcio) ---> CaCO3 (Carbonato de calcio)

5. Ca (calcio) + O2 (oxigeno) ---> CaO(Oxido de Calcio)

6. Fe2O3 + H2O --> HFeO2

7. Cl2O7 +H2O ---> HClO4

8. MnO3 + H2O ---> H2MnO4

9. Na2O + H2O ---> 2HNaO

10. N2 + O2 ---> Na2O5
Reacciones de Simple Sustitución: Llamadas también de desplazamiento o remplazo; consiste cuando un compuesto reacciona frente a un simple elemento, produciendo un intercambio atómico, ej:

1. 2HCl + Zn ---> ZnCl2 + H2

2. H2SO4 + Al ---> Al2 (SO4) + H2

3. Fe + Ag (NO3) ---> Ag2 + Fe(NO3)

4. HPO3 + Ca ---> CaPO3 + H

5. INi + K ---> KNi + I

Reacciones de Doble Sustitución: Son reacciones donde los átomos o iones hacen un intercambio de uno y otro compuesto según su afinidad positiva con una negativa, ejemplos:

1. H2CO3 + NaCl ---->Na2 CO3 + 2HCl

2. HClO3 + Na2S4 ---> Na2 (ClO3) + Na4S2

3. FeS + Ca (NiO3) ---> CaS + Fe (NiO3)3




4.4 Neutralización
Cuando reacciona un ácido con una base se produce una sal y agua. Esta reacción se denomina neutralización porque el ácido y la base dejan de serlo cuando reaccionan entre sí, pero no significa, necesariamente, que el pH de la disolución resultante sea neutro.

Ácido + Base   ð Sal + Agua

En una volumetría se miden volúmenes haciendo uso de material muy simple: bureta y pipeta. Al ser esta volumetría de neutralización o ácido-base lo que se hace es provocar una reacción ácido-base debiendo determinar el punto de equivalencia, es decir: en qué momento el número de equivalentes de ácido añadidos coinciden con el número de equivalentes de base. La determinación de este punto de equivalencia se realiza con un indicador ácido-base apropiado. El indicador elegido debe virar en un intervalo de pH en el que quede incluido el pH de la disolución obtenida cuando se alcanza el punto de equivalencia. El alumno puede calcular, de forma aproximada, el pH de la disolución de acetato de sodio obtenida y decidir qué indicador entre los disponibles en el laboratorio es el adecuado para tal determinación.

La acidez y la basicidad constituyen el conjunto de propiedades características de dos importantes grupos de sustancias químicas: los ácidos y las bases. Las ideas actuales sobre tales conceptos químicos consideran los ácidos como dadores de protones y las bases como aceptoras. Los procesos en los que interviene un ácido intervienen también su base conjugada, que es la sustancia que recibe el protón cedido por el ácido. Tales procesos se denominan reacciones ácido-base.

La acidez y la basicidad son dos formas contrapuestas de comportamiento de las sustancias químicas cuyo estudio atrajo siempre la atención de los químicos. En los albores mismos de la ciencia química, Boyle y Lavoisier estudiaron sistemáticamente el comportamiento de las sustancias agrupadas bajo los términos de ácido y álcali (base).
Por medio de las volumetrías de neutralización determinamos concentraciones de ácidos o de bases midiendo volúmenes equivalentes de bases o de ácidos de concentración conocida.

· Según las cantidades de sustancia (número de moles) relativas de estas sustancias y la estequiometria de la reacción se pueden dar tres situaciones:

a) exceso de ácido: reacciona toda la base con parte del ácido presente y queda un exceso de ácido sin reaccionar: la disolución final será ácida (pH < 7)

b) exceso de base: reacciona todo el ácido con parte de la base presente y queda un exceso de base sin reaccionar: la disolución final será básica (pH > 7)

c) proporción estequiometria de ácido y base: todo el ácido y toda la base presente reaccionan entre sí, no queda exceso de ninguno de ellos. La neutralización es completa. Se ha alcanzado el punto de equivalencia. El pH de la disolución final dependerá de la sal que se forme, ya que ésta podrá sufrir hidrólisis y por ello el pH en el punto de equivalencia puede ser distinto de siete. Será siete (neutra) si la  sal  formada proviene de ácido fuerte-base fuerte, como el NaCl.

4.5 Óxido-Reducción
Reacciones de óxido reducción o redox: Son aquellas reacciones en las cuales los átomos experimentan cambios del número de oxidación. En ellas hay transferencia de electrones y el proceso de oxidación y reducción se presentan simultáneamente, un átomo se oxida y otro se reduce. En estas reacciones la cantidad de electrones perdidos es igual a la cantidad de electrones ganados.

Número de oxidación o estado de oxidación: es el número que se asigna a cada tipo de átomo de un elemento, un compuesto o ión, y que representa el número de electrones que ha ganado, perdido o compartido. El número se establece de manera arbitraria, pero su asignación se basa en diferentes postulados.

Existen diferentes definiciones sobre oxidación y reducción:
Oxidación: es un incremento algebraico del número de oxidación y corresponde a la perdida de electrones. También se denomina oxidación la pérdida de hidrógeno o ganancia de oxígeno.

Reducción: es la disminución algebraica del número de oxidación y corresponde a la ganancia de electrones. Igualmente se define como la pérdida de oxígeno y ganancia de hidrógeno.
Para determinar cuando un elemento se oxida o se reduce puede utilizarse la siguiente regla práctica:

Si el elemento cambia su número de oxidación en este sentido 
http://www.salonhogar.net/quimica/nomenclatura_quimica/T16flechita2.gif SE OXIDA 
-7  -6  -5  -4  -3  -2  -1  0  1  2  3  4  5  6  7
Si el elemento cambia su número de oxidación en este sentido http://www.salonhogar.net/quimica/nomenclatura_quimica/T16flechita3.gif SE REDUCE.

Así si el Na0 pasa a Na+ perdió un electrón, lo que indica que se oxidó.
Si el Cl0 pasa a Cl- ganó un electrón, lo que indica que se redujo.

Agentes oxidantes: son especies químicas que ganan electrones, se reducen y oxidan a otras sustancias.

Agentes reductores: son especies químicas que pierden electrones, se oxidan y reducen a otras sustancias.

4.6 Aplicaciones
Las Reacciones Químicas afectan la capa Terrestre. A consecuencia de ello, existen cambios químicos que alteran el uso de químicos que causan daños a la población y a la fauna.
La termoeléctrica es la principal contaminante, debido a que diario elimina una gran cantidad de humo contaminante para nuestro Ambiente y para nuestro Metabolismo. Una Reacción Química es un cambio químico en el cual dos o más sustancias se transforman en otras sustancias llamadas productos y nos afectan tanto Ambientalmente como Metabólicamente.
La termoeléctrica libera diferentes tipos de contaminantes como; Oxido de Azufre, Monóxido de Carbono y Oxido de Nitrógeno.
La termoeléctrica, libera una gran cantidad de agua caliente, que se libera hacia el mar después de enfriar las turbinas.
La reacción procede en la dirección que permite la disminución de la energía interna, mientras que el equilibrio es obtenido cuando la misma es minimizada, es decir que
Dg=0
Considerar la reacción entre agua y gas
 H 2Og + COg= 2g + CO2


4.7 Cálculos estequiometricos con reacciones químicas
La fabricación de productos químicos es uno de los esfuerzos industriales más grandes del mundo. Las industrias químicas son la base de cualquier sociedad industrial. Dependemos de ellas respecto a productos que utilizamos a diario como gasolina y lubricantes de la industria del petróleo; alimentos y medicinas de la industria alimentaria; telas y ropa de las industrias textiles. Estas son sólo unos cuantos ejemplos pero casi todo lo que compramos diariamente se fabrica mediante algún proceso químico o al menos incluye el uso de productos químicos.

Por razones económicas los procesos químicos y la producción de sustancias químicas deben realizarse con el menor desperdicio posible, lo que se conoce como "optimización de procesos". Cuando se tiene una reacción química, el Químico se interesa en la cantidad de producto que puede formarse a partir de cantidades establecidas de reactivos. Esto también es importante en la mayoría de las aplicaciones de las reacciones, tanto en la investigación como en la industria.

En una reacción química siempre se conserva la masa, de ahí que una cantidad específica de reactivos al reaccionar, formará productos cuya masa será igual a la de los reactivos. Al químico le interesa entonces la relación que guardan entre sí las masas de los reactivos y los productos individualmente.

Los cálculos que comprenden estas relaciones de masa se conocen como cálculos estequiometricos.
 La estequiometria es el concepto usado para designar a la parte de la química que estudia las relaciones cuantitativas de las sustancias y sus reacciones. En su origen etimológico, se compone de dos raíces, estequio que se refiere a las partes o elementos de los compuestos y metría, que dice sobre la medida de las masas.
¿Cómo se realizan los cálculos estequiometricos?

·       ATG
·       MOLES
·       No. DE ÁTOMOS y No. DE MOLÉCULAS
·       VOLUMEN MOLAR
·       REACTIVOS O PRODUCTOS
·       REACTIVO LIMITANTE


MAPA CONCEPTUAL N°7 DE UNIDAD 3 ENLACES QUIMICOS DE NESTOR LWILLI LEDEZMA GARCIA


lunes, 15 de octubre de 2012

MAPA CONCEPTUAL N°7 UNIDAD 3 ENLACES QUIMICOS DE MIRIAM LIZBETH VALDES ALPIRES


RESUMEN 7 COMPLETO DE UNIDAD 3 ENLACES QUIMICOS




3.2.1.3  Teoría del Orbital Molecular
La Teoría de Orbitales Moleculares (T.O.M.) es la segunda aproximación al estudio del enlace covalente, y la más ampliamente empleada para explicar la estructura y la geometría de muchos sólidos inorgánicos. El punto de partida consiste en asumir que si los dos núcleos implicados en el enlace se ubican a la distancia de equilibrio, los electrones se alojarán no en orbitales atómicos de cada elemento, sino en orbitales moleculares, que son análogos a los atómicos, y que presentan características similares, como se verá más adelante. Esta analogía es de tal grado que al igual que ocurría con los átomos polielectrónicos, no es posible resolver la ecuación de Schrödinger de forma exacta para la molécula, y de nuevo hay que recurrir a métodos aproximados para conocer la forma de las funciones de onda que representen los mencionados orbitales moleculares.
Uno de los métodos más empleados es el que hace uso de las Combinaciones Lineales de Orbitales Atómicos (CLOA). Esta aproximación puede entenderse de forma simple si se piensa que cuando un electrón esté cerca de uno de los núcleos, es decir, cuando esté “controlado” por un núcleo, su función de onda será muy similar a la de un orbital atómico. Los orbitales moleculares de la molécula de H2 se obtienen de forma aproximada mediante la combinación lineal de los orbitales atómicos 1s de cada átomo de hidrógeno. Únicamente se pueden escribir dos combinaciones lineales:
Ψ+ = cAφA +cBφB
Ψ- = cAφA – cBφB

3.3  Enlace iónico
La atracción electrostática entre átomos de diferente carga eléctrica genera un tipo de enlace conocido como enlace iónico. Es necesario que para que pueda darse dicho enlace uno se los átomos pueda ceder electrones y por el contrario el otro pueda ganar electrones, es decir, se produce la unión entre átomos que pasan a ser cationes y aniones. Este tipo de enlace generalmente se produce entre un elemento metálico (electropositivo) y elemento no metálico (electronegativo).  Un ejemplo típico de este tipo de enlace lo  es  el cristal iónico cloruro de sodio (NaCl)  sal común. En este enlace tiene lugar la transferencia de un electrón del átomo de sodio al átomo de cloro, como se observa a continuación:
http://dieumsnh.qfb.umich.mx/fisquimica/enlace_ionico_archivos/image002.gif
De esta manera forman dos iones de carga contraria: un catión (de carga positiva) y un anión (de carga negativa). La diferencia entre las cargas de los iones provoca entonces una fuerza de interacción electromagnética entre los átomos que los mantiene unidos. El enlace iónico es la unión en la que los elementos involucrados aceptarán o perderán electrones.
En una solución, los enlaces iónicos pueden romperse y se considera entonces que los iones están disociados. Es por eso que una solución fisiológica de cloruro de sodio y agua se marca como: Na+ + Cl-, mientras que los cristales de cloruro de sodio se marcan: Na+Cl- o simplemente NaCl.

3.3.1  Formación y propiedades de los compuestos iónicos

Las sustancias iónicas están constituidas por iones ordenados en el retículo cristalino; las fuerzas que mantienen esta ordenación son fuerzas de Coulomb, muy intensas. Esto hace que las sustancias iónicas sean sólidos cristalinos con puntos de fusión elevados. En efecto, para fundir un cristal iónico hay que deshacer la red cristalina, separar los iones. El aporte de energía necesario para la fusión, en forma de energía térmica, ha de igualar al de energía reticular, que es la energía desprendida

en la formación de un mol de compuesto iónico sólido a partir de los correspondientes iones en estado gaseoso. Esto hace que haya una relación entre energía reticular y punto de fusión, siendo éste tanto más elevado cuanto mayor es el valor de aquella.

Por otra parte, la aparición de fuerzas repulsivas muy intensas cuando dos iones se aproximan a distancias inferiores a la distancia reticular (distancia en la que quedan en la red dos iones de signo contrario), hace que los cristales iónicos sean muy poco compresibles. Hay sustancias cuyas moléculas, si bien son eléctricamente neutras, mantienen una separación de cargas. Esto se debe a que no hay coincidencia entre el centro de gravedad de las cargas positivas y el de las negativas: la molécula es un dipolo, es decir, un conjunto de dos cargas iguales en valor absoluto pero de distinto signo, separadas a una cierta distancia. Los dipolos se caracterizan por su momento; producto del valor absoluto de una de las cargas por la distancia que las separa. Un de estas sustancias polares es, por ejemplo el agua.

Cuando un compuesto iónico se introduce en un disolvente polar como el agua, los iones de la superficie de cristal provocan a su alrededor una orientación de las moléculas dipolares, que enfrentan hacia cada ion sus extremos con carga opuesta a la del mismo. En este proceso de orientación se libera una energía que, si supera a la energía reticular, arranca al ion de la red. Una vez arrancado, el ion se rodea de moléculas de disolvente: queda solventado. Las moléculas de disolvente alrededor de los iones se comportan como capas protectoras que impiden la reagrupación de los mismos. Todo esto hace que, en general, los compuestos iónicos sean solubles en disolventes polares, aunque dependiendo siempre la solubilidad del valor de la energía reticular y del momento dipolar del disolvente. Así, un compuesto como el NaCl, es muy soluble en disolventes como el agua, y un compuesto como el sulfato de bario, con alta energía reticular, no es soluble en los disolventes de momento dipolar muy elevado.

 3.3.2  Redes cristalinas


Redes cristalinas
La red cristalina está formada por iones de signo opuesto, de manera que cada uno crea a su alrededor un campo eléctrico que posibilita que estén rodeados de iones contrarios. Los sólidos cristalinos mantienen sus iones prácticamente en contacto mutuo, lo que explica que sean prácticamente incompresibles. Además, estos iones no pueden moverse libremente, sino que se hallan dispuestos en posiciones fijas distribuidas desordenadamente en el espacio formando retículos cristalinos o redes espaciales.
Los cristalográfos clasifican los retículos cristalinos en siete tipos de poliedros llama sistemas cristalográficos.
En cada uno de ellos iones pueden ocupar los vértices, los centros de las caras o el centro del cuerpo de dichos poliedros. El más sencillo de éstos recibe el nombre de celdilla unidad. Uno de los parámetros básicos de todo cristal es el llamado índice de coordinación que podemos definir como el número de iones de un signo que rodean a un ion de signo opuesto. Podrán existir, según los casos, índices diferentes para el catión y para el anión. El índice de coordinación, así como el tipo de estructura geométrica en que cristalice un compuesto iónico dependen de dos factores:
• Tamaño de los iones.
El valor del radio de los iones marcará las distancias de equilibrio a que éstos se situarán entre sí por simple cuestión de cabida en i espacio de la red.
• Carga de los iones.
Se agruparán los iones en la red de forma que se mantenga la electro neutralidad del cristal. La mayor parte de los sólidos de la naturaleza son cristalinos lo que significa que los átomos, moléculas o iones que los forman se disponen ordenados geométricamente en el espacio. Esta estructura ordenada no se aprecia en muchos casos a simple vista porque están formados por un conjunto de micro cristales orientados de diferentes maneras formando una estructura poli cristalina, aparentemente amorfa. Este "orden" se opone al desorden que se manifiesta en los gases o líquidos. Cuando un mineral no presenta estructura cristalina se denomina amorfo .La cristalografía es la ciencia que estudia las formas y propiedades fisicoquímicas de la materia en estado cristalino.

3.3.2.1  Estructura redes cristalinas

La estructura cristalina es la forma sólida de cómo se ordenan y empaquetan los átomos, moléculas, o iones. Estos son empaquetados de manera ordenada y con patrones de repetición que se extienden en las tres dimensiones del espacio. La cristalografía es el estudio científico de los cristales y su formación.
Estructura:
El estado cristalino de la materia es el de mayor orden, es decir, donde las correlaciones internas son mayores. Esto se refleja en sus propiedades antrópicas y discontinuas. Suelen aparecer como entidades puras, homogéneas y con formas geométricas definidas (hábito) cuando están bien formados. No obstante, su morfología externa no es suficiente para evaluar la denominada cristalinidad de un material.
Diferencia entre vidrios y cristales:
Si nos fijamos con detenimiento, en estos gráficos existe siempre una fracción de los mismos que se repite. Asimismo, los cristales, átomos, iones o moléculas se empaquetan y dan lugar a motivos que se repiten del orden de 1 Ángstrom = 10-8 cm; a esta repetitividad, en tres dimensiones, la denominamos red cristalina. El conjunto que se repite, por translación ordenada, genera toda la red (todo el cristal) y la denominamos unidad elemental o celda unidad.
En ocasiones la repetitividad se rompe o no es exacta, y esto diferencia los vidrios y los cristales, los vidrios generalmente se denominan materiales amorfos (desordenados o poco ordenados).
No obstante, la materia no es totalmente ordenada o desordenada (cristalina o no cristalina) y nos encontramos una gradación continua del orden en que está organizada esta materia (grados de cristalinidad), en donde los extremos serían materiales con estructura atómica perfectamente ordenada (cristalinos) y completamente desordenada (amorfos).


3.3.2.2  Energía reticular

La energía reticular, también conocida como energía de red, es la energía que se necesita para poder separar de manera completa un mol de un compuesto de tipo iónico en sus respectivos iones gaseosos. También se puede decir que la energía reticular es la energía que se consigue a través de la formación de un compuesto de tipo iónico partiendo siempre de sus iones gaseosos.
Este tipo de energía muestra la estabilidad que tiene las redes cristalinas, y viene medida como energía/mol, teniendo las mismas unidades de medida que tiene la entalpía estándar (∆Hº), es decir KJ/mol, aunque de signo opuesto.
La energía reticular es imposible de medir de forma directa, sin embargo, conociendo la estructura y la composición que tenga el compuesto iónico que queramos estudiar, podemos calcular o al menos aproximarnos a ella mediante una ecuación que da el modelo iónico, basado en la Ley de Coulomb, entre otras. También existe la posibilidad de calcular la energía reticular de manera indirecta mediante los ciclos termodinámicos.

 El modelo iónico es aquel que se encuentra formado por cationes y aniones a través de fuerzas electrostáticas, 
siempre que estemos hablando del estado sólido. Este caso concreto es válido solamente si existe bastante diferencia de electronegatividad entre los elementos que forman el compuesto.
En un sólido iónico, los electrones se encuentran localizados en los correspondientes iones, estando bajo la influencia solamente de sus respectivos núcleos. No hay deslocalización de los electrones como podría ocurrir en el caso de los sólidos de tipo metálicos, ni siquiera hay compartición de electrones como en el caso de los sólidos de tipo covalente. La localización de los electrones tiene como consecuencia la no conducción de la corriente eléctrica para los sólidos iónicos, pero si son aislantes.
La ecuación que viene tras aplicar dicho modelo es:
Uo = -( Na . A . Z^+ . Z^- .q^2 ) / 4πєo . do . ( 1-1/n)
La energía reticular se puede conocer de manera experimental indirectamente a través de la aplicación de la ley de Hess (caso particular del primer principio de la termodinámica). Cuando se usa este caso se conoce como ciclo de Born-Haber, el cual consiste en examinar un ciclo termodinámico que es resultado de considerar la energía que participa en la formación del compuesto iónico de tipo sólido, así como también se puede explicar como la energía a partir de los elementos que forman el compuesto estándar, o aquella que se transfiere en la formación de los compuestos partiendo siempre de los elemento que se encuentran en estado estándar pero siguiendo un camino distinto que está formado por diferentes etapas:
1.  En primer lugar el proceso de formación de los átomos que se encuentran en estado gaseoso partiendo de los elementos siempre en su estado estándar. En este paso por regla general se tiene en cuenta las energías que se encuentran asociadas a la sublimación, y vaporización de los distintos elementos que forman el compuesto, y por lo tanto dependerá del estado de agregación en el que se encuentren cada uno de ellos.
2.  En la segunda etapa tiene lugar la formación de iones estables, los cuales se encuentran en el retículo iónico del cual parten los elementos que se encuentran en estado gaseoso. En este paso se encuentran implicadas la energía de ionización, así como la afinidad electrónica de los elementos implicados.
3.  En el tercer paso tiene lugar la formación de la red cristalina partiendo de los iones gaseosos y estables. La energía que se desprende cuando se forma un compuesto partiendo de un metal y de un no metal.

miércoles, 10 de octubre de 2012

MAPA CONCEPTUAL N°6 UNIDAD 3 ENLACES QUIMICOS DE MIRIAM LIZBETH VALDES ALPIRES






RESUMEN 6 COMPLETO UNIDAD 3 ENLACES QUMICOS




3.1  Introducción a enlaces químicos
En el presente trabajo se han desarrollado puntos importantes de la química, en este caso acerca de los enlaces químicos; primero se debe tomar en cuenta que enlace significa unión, un enlace químico es la unión de dos o más átomos que se han unido con un solo fin, alcanzar la estabilidad, del mismo modo,  como la fuerza de unión que existe entre dos átomos, cualquiera que sea su naturaleza, debido a la transferencia total o parcial de electrones para adquirir ambos la configuración electrónica estable correspondiente a los gases inerte; y formar moléculas estables. En este sentido, el trabajo antes descrito, se ha realizado con el fin de apreciar de una mejor manera el tema en cuestión y servir de apoyo a trabajos posteriores que tengan relación.
El enlace químico es la fuerza entre los átomos que los mantiene unidos en las moléculas. Cuando dos o más átomos se acercan lo suficiente, se puede producir una fuerza de atracción entre los electrones de los átomos individuales y el núcleo de otro u otros átomos. Si esta fuerza es lo suficientemente grande para mantener unidos los átomos, se dice que se ha formado un enlace químico. Todos los enlaces químicos resultan de la atracción simultánea de uno o más electrones por más de un núcleo. es el proceso químico responsable de las interacciones atractivas entre átomos y moléculas, y que confiere estabilidad a los compuestos químicos diatómicos y poliatómicos. La explicación de tales fuerzas atractivas es un área compleja que está descrita por las leyes de la química cuántica.
Sin embargo, en la práctica, los químicos suelen apoyarse en la fisicoquímica o en descripciones cualitativas que son menos rigurosas, pero más sencillas en su propia descripción del enlace químico (ver valencia). En general, el enlace químico fuerte está asociado con la compartición o transferencia de electrones entre los átomos participantes. Las moléculas, cristales, y gases diatómicos -o sea la mayor parte del ambiente físico que nos rodea- está unido por enlaces químicos, que determinan las propiedades físicas y químicas de la materia.


Si los átomos enlazados son elementos metálicos, el enlace se llama metálico. Los electrones son compartidos por los átomos, pero se pueden mover atreves del solido proporcionado conductividad térmica y eléctrica, brillo, maleabilidad y ductilidad.

3.1.1  Concepto de enlace químico
Los enlaces químicos (determinados por la manera en la cual se comportan los electrones), dentro de la física, son fuerzas que permiten la unión de los átomos, para constituir moléculas, que poseen mayor estabilidad; dos átomos ligados a través de alguno de estos enlaces, conforman una molécula. La mayoría de los átomos logra ser considerado estable, cuando posee ocho electrones en su último nivel energético (regla del octeto).

En los enlacen químicos tienen gran influencia el estado de oxidación y la electronegatividad de los elementos que van a unirse. El estado de oxidación indica la carga eléctrica del ión (átomo cargado eléctricamente), que puede ser positiva (catión) o negativa (anión); y expresa el comportamiento de los electrones en las uniones químicas. La electronegatividad es la fuerza que posee cada átomo, para atraer los electrones del mismo, y de otros átomos; esto define en gran medida el tipo de enlace que se formará entre dos átomos determinados.
Existen diferentes tipos de enlaces químicos; entre ellos encontramos a: los enlaces covalentes y los enlaces iónicos  (enlaces fuertes), y los puentes de hidrógeno y las fuerzas de Van der Waals (enlaces débiles).
En los enlaces covalentes, que son fuertes y estables, se comparten uno o más pares de electrones (hallados en el último orbital del átomo) entre dos o más átomos, de elementos no metales.
Los enlaces iónicos se caracterizan por la transferencia de electrones entre elementos metales y no metales; el metal tiende a ceder electrones, mientras que el no metal tiende a ganar electrones.
Los enlaces mediante puentes de hidrógeno son débiles, no obstante, cuando se forman muchos de estos enlaces, adquieren una fuerza mayor, y logran tener una influencia notoria en las sustancias, respecto de su estructura y propiedades. Los enlaces por puentes de hidrógeno se forman por la unión entre un átomo electronegativo y un hidrógeno, unido de manera covalente a otro átomo electronegativo distinto.
Las fuerzas de Van der Waals son un tipo de enlace químico débil y breve (pero aditivo), que surge entre átomos (de moléculas no polares) que se encuentran cerca unos de otros, y son útiles para el mantenimiento de las estructuras de diversas sustancias valiosas.

3.1.2   Clasificación de los enlaces químicos
Existen tres tipos principales de enlaces químicos: enlace iónico, enlace covalente y enlace metálico. Estos enlaces, al condicionar las propiedades de las sustancias que los presentan, permiten clasificarlas en: iónicas, covalentes y metálicas o metales.
Enlace Iónico:
Este enlace se produce cuando átomos de elementos metálicos (especialmente los situados más a la izquierda en la tabla periódica -períodos 1, 2 y 3) se encuentran con átomos no metálicos (los elementos situados a la derecha en la tabla periódica -especialmente los períodos 16 y 17).
En este caso los átomos del metal ceden electrones a los átomos del no metal, transformándose en iones positivos y negativos, respectivamente. Al formarse iones de carga opuesta éstos se atraen por fuerzas eléctricas intensas, quedando fuertemente unidos y dando lugar a un compuesto iónico. Estas fuerzas eléctricas las llamamos enlaces iónicos.
Ejemplo: La sal común se forma cuando los átomos del gas cloro se ponen en contacto con los átomos del metal sodio. 

Enlace Covalente:
Los enlaces covalentes son las fuerzas que mantienen unidos entre sí los átomos no metálicos (los elementos situados a la derecha en la tabla periódica -C, O, F, Cl, ...).
Estos átomos tienen muchos electrones en su nivel más externo (electrones de valencia) y tienen tendencia a ganar electrones más que a cederlos, para adquirir la estabilidad de la estructura electrónica de gas noble. Por tanto, los átomos no metálicos no pueden cederse electrones entre sí para formar iones de signo opuesto.
En este caso el enlace se forma al compartir un par de electrones entre los dos átomos, uno procedente de cada átomo. El par de electrones compartido es común a los dos átomos y los mantiene unidos, de manera que ambos adquieren la estructura electrónica de gas noble. Se forman así habitualmente moléculas: pequeños grupos de átomos unidos entre sí por enlaces covalentes.
Ejemplo: El gas cloro está formado por moléculas, Cl2, en las que dos átomos de cloro se hallan unidos por un enlace covalente.

Enlace Metálico:
Para explicar las propiedades características de los metales (su alta conductividad eléctrica y térmica, ductilidad y maleabilidad, ...) se ha elaborado un modelo de enlace metálico conocido como modelo de la nube o del mar de electrones:
Los átomos de los metales tienen pocos electrones en su última capa, por lo general 1, 2 ó 3. Éstos átomos pierden fácilmente esos electrones (electrones de valencia) y se convierten en iones positivos, por ejemplo Na+, Cu2+, Mg2+. Los iones positivos resultantes se ordenan en el espacio formando la red metálica. Los electrones de valencia desprendidos de los átomos forman una nube de electrones que puede desplazarse a través de toda la red. De este modo todo el conjunto de los iones positivos del metal queda unido mediante la nube de electrones con carga negativa que los envuelve.
Fuerzas intermoleculares
Dentro de una molécula, los átomos están unidos mediante fuerzas intermoleculares (enlaces iónicos, metálicos o covalentes, principalmente). Estas son las fuerzas que se deben vencer para que se produzca un cambio químico. Son estas fuerzas, por tanto, las que determinan las propiedades químicas de las sustancias.
Sin embargo existen otras fuerzas intermoleculares que actúan sobre distintas moléculas o iones y que hacen que éstos se atraigan o se repelan. Estas fuerzas son las que determinan las propiedades físicas de las sustancias como, por ejemplo, el estado de agregación, el punto de fusión y de ebullición, la solubilidad, la tensión superficial, la densidad, etc.

3.1.3    Aplicaciones y limitaciones de la Regla del Octeto
Esta regla establece que al formarse un enlace químico los átomos ganan, pierden o comparten electrones para lograr una estructura electrónica estable similar a la de un gas noble. En general, podemos aceptar esta regla para los átomos que están a distancia de cuatro o menos números atómicos de un gas raro. Muchos otros átomos no siguen la regla del octeto y contienen seis, diez o hasta catorce electrones. La Regla del octeto, enunciada en1917por Gilbert Newton Lewis, dice que la tendencia de los átomos de los elementos del sistema periódico es completar sus últimos niveles de energía con una cantidad de 8electronesde forma tal que adquiere una configuración muy estable. Esta configuración es semejante a la de un gas noble, los elementos ubicados al extremo derecho de la tabla periódica. Los gases nobles son elementos electro químicamente estables, ya que cumplen con la estructura de Lewis, son inertes, es decir que es muy difícil que reaccionen con algún otro elemento. Esta regla es aplicable para la creación de enlaces entre los átomos, la naturaleza de estos enlaces determinará el comportamiento y las propiedades de las moléculas. Estas propiedades dependerán por tanto del tipo de enlace, del número de enlaces por átomo, y de las fuerzas intermoleculares

La regla del octeto funciona principalmente para los elementos del segundo periodo de la tabla periódica. Estos elementos solo tienen subniveles 2s 2p, los cuales pueden contener un total de ocho electrones. Cuando un átomo de uno de estos elementos forman un compuesto covalente, pueden obtener la configuración electrónica de gas noble [Ne] al compartir electrones con otros átomos del mismo compuesto.
Limitaciones del las reglas de octeto para las formulas de Lewis.
Las formulas de Lewis normalmente no se escriben para compuestos que contienen metales de transición d y f. los metales de transición d y f utilizan en el enlace orbítales s y p.
1.- La mayoría de los compuestos covalentes del berilio, Be. Debido a que Be contiene solo dos electrones en la capa de valencia, habitualmente forma solo dos enlaces covalentes cuando se enlaza con otros dos átomos. Por lo tanto se usa cuatro electrones como el número necesario para Be en la etapa 2, en la etapa 5 y 6 se usa solo dos pares de electrones para Be.
2.- La mayoría de los compuestos covalentes de los elementos del Grupo IIIA, especialmente boro, B. Estos elementos contienen solo tres electrones en la capa de valencia, así que a menudo forman tres enlaces covalentes cuando se enlazan a otros tres átomos. Por lo tanto, se usa seis electrones como el número necesario para los elementos IIIA contiene solo tres electrones en la etapa 2; y en las etapas 5 y 6 se usa solo tres pares de electrones para los elementos IIIA.
3.- Los compuestos o iones que contienen un número impar de electrones ejemplos son NO, con 11 electrones en la capa de valencia, y NO2, con 17 electrones en la capa de valencia.
4.- Compuestos o iones en los que el elemento central necesita más de ocho electrones en la capa de valencia para mantener todos los electrones disponibles, D. cuando uno se encuentra con esto, se añaden las reglas extra a las etapas 4 y 6.

Etapa 4a: si C, el numero de electrones compartidos, es menor que el número necesario para enlazar todos los átomos al átomo central, entonces C se aumenta el número de electrones necesario.
Etapa 6a: si C debe aumentarse en la etapa 4a, entonces los octetos de todos los átomos podrían satisfacerse antes de que todos los electrones D hayan sido añadidos. Colocar los electrones extra sobre el elemento central..


3.2   Enlace Covalente
Un enlace covalente entre dos átomos o grupos de átomos se produce cuando estos, para alcanzar el octeto estable, comparten electrones del último nivel.1 La diferencia de electronegatividades entre los átomos no es suficiente
De esta forma, los dos átomos comparten uno o más pares electrónicos en un nuevo tipo de orbital, denominado orbital molecular. Los enlaces covalentes se suelen producir entre elementos gaseosos o no metales.
El Enlace Covalente se presenta cuando dos átomos comparten electrones para estabilizar la unión.
A diferencia de lo que pasa en un enlace iónico, en donde se produce la transferencia de electrones de un átomo a otro; en el enlace covalente, los electrones de enlace son compartidos por ambos átomos. En el enlace covalente, los dos átomos no metálicos comparten uno o más electrones, es decir se unen a través de sus electrones en el último orbital, el cual depende del número atómico en cuestión. Entre los dos átomos pueden compartirse uno, dos o tres pares de electrones, lo cual dará lugar a la formación de un enlace simple, doble o triple respectivamente. En la representación de Lewis, estos enlaces pueden representarse por una pequeña línea entre los átomos.
Considérense átomos de hidrógeno, a medida que se aproximan entre sí, se van haciendo notar las fuerzas que atraen a cada electrónal núcleo del otro átomo, hasta que dichas fuerzas de atracción se llegan a compensar con la repulsión que los electrones sienten entre sí. En ese punto, la molécula presenta la configuración más estable.
Lo que ha sucedido es que los orbitales de ambos electrones se han traslapado, de modo que ahora es imposible distinguir a qué átomo pertenece cada uno de los electrones.
Sin embargo, cuando los átomos son distintos, los electrones compartidos no serán atraídos por igual, de modo que estos tenderán a aproximarse hacia el átomo más electronegativo, es decir, aquel que tenga una mayor apetencia de electrones. Este fenómeno se denomina polaridad (los átomos con mayor electronegatividad obtienen una polaridad más negativa, atrayendo los electrones compartidos hacia su núcleo), y resulta en un desplazamiento de las cargas dentro de la molécula.
Se podría decir que al átomo más electronegativo no le gusta mucho compartir sus electrones con los demás átomos, y en el caso más extremo, deseará que el electrón le sea cedido sin condiciones formándose entonces un enlace iónico, de ahí que se diga que los enlaces covalentes polares tienen, en alguna medida, carácter iónico.

3.2.1  Teorías para explicar el enlace covalente y sus alcances
En la actualidad existen dos teorías para explicar el enlace covalente: la Teoría del Enlace de Valencia y la Teoría de Orbitales Moleculares. Es preciso hacer notar que ninguna de las dos teorías es "mejor" que la otra, y que cada una de ellas puede ser más adecuada en función del parámetro, del cálculo o de la propiedad que se esté estudiando. Así, por ejemplo, si se trata de determinar la geometría molecular o la energía de disociación, propiedades del estado fundamental de la molécula, es más conveniente emplear la Teoría del Enlace de Valencia. En cambio, si se trata de explicar las propiedades espectroscópicas, es preferible emplear la Teoría de Orbitales Moleculares. En realidad ambas teorías son incluso complementarias, hasta tal punto que no utilizar ambas supondría limitar las herramientas disponibles para el estudio del enlace.

La teoría del enlace de valencia
La superación del modelo de Bohr y el desarrollo del modelo atómico de la mecánica cuántica tuvo una clara repercusión en las ideas sobre el enlace químico en general y sobre el covalente en particular. Uno de los enfoques mecano cuántico del enlace covalente se conoce como teoría del enlace de valencia y permite comprender en términos no sólo de energías, sino también de fuerzas, el fenómeno del enlace entre átomos. La formación del enlace covalente simple tiene lugar cuando los orbitales correspondientes a dos electrones desapareados de átomos diferentes se superponen o solapan, dando lugar a una región común en la cual los dos electrones con espines opuestos, tal y como exige el principio de exclusión de Pauli, ocupan un mismo orbital. Ese par compartido constituye el elemento de enlace entre los dos átomos. Así, por ejemplo, cuando dos átomos de H se aproximan suficientemente, existe una disposición en la cual sus nubes electrónicas están parcialmente solapadas y para la que la energía potencial del conjunto es mínima, constituyendo, pues, una situación de enlace. En términos electrónicos puede afirmarse que el orbital 1s de cada átomo de hidrógeno, semiocupado por su electrón correspondiente, es completado por el electrón del otro átomo de hidrógeno. Los dos electrones con espines opuestos de este par, son atraídos entonces por cada uno de los núcleos, constituyendo el par de enlace. La existencia de este par común es lo que determina que los núcleos estén ligados entre sí con las limitaciones que, en cuanto a proximidad, imponen las fuerzas de repulsión nuclear. La primitiva idea de comparación de electrones de Lewis sigue, de algún modo, presente en la teoría del enlace de valencia, aunque se abandona la regla del octete y se sustituye por la condición de que dos electrones desapareados puedan ocupar un mismo orbital. El número de enlaces covalentes posible depende, entonces, del número de electrones desapareados presentes en el átomo correspondiente o en algún estado excitado previo a la formación de la molécula.
La Teoría de Orbitales Moleculares (T.O.M.) es la segunda aproximación al estudio del enlace covalente, y la más ampliamente empleada para explicar la estructura y la geometría de muchos sólidos inorgánicos. El punto de partida consiste en asumir que si los dos núcleos implicados en el enlace se ubican a la distancia de equilibrio, los electrones se alojarán no en orbitales atómicos de cada elemento, sino en orbitales moleculares, que son análogos a los atómicos, y que presentan características similares, como se verá más adelante. Esta analogía es de tal grado que al igual que ocurría con los átomos polielectrónicos, no es posible resolver la ecuación de Schrödinger de forma exacta para la molécula, y de nuevo hay que recurrir a métodos aproximados para conocer la forma de las funciones de onda que representen los mencionados orbitales moleculares. Uno de los métodos más empleados es el que hace uso de las Combinaciones Lineales de Orbitales Atómicos (CLOA). Esta aproximación puede entenderse de forma simple si se piensa que cuando un electrón esté cerca de uno de los núcleos, es decir, cuando esté “controlado” por un núcleo, su función de onda será muy similar a la de un orbital atómico. Los orbitales moleculares de la molécula de H2 se obtienen de forma aproximada mediante la combinación lineal de los orbitales atómicos 1s de cada átomo de hidrógeno. Únicamente se pueden escribir dos combinaciones lineales:
Ψ+ = cAφA +cBφB
Ψ- = cAφA – cBφB
3.2.1.1  Teorías del Enlace de Valencia
La teoría del enlace de valencia intenta explicar cómo dos átomos se enlazan entre sí, buscando así presentar una interpretación satisfactoria para los enlaces covalentes.
En esta teoría lo que está incluido es la combinación de dos orbitales atómicos de dos átomos distintos.
Siendo así, se busca estudiar y explicar cómo es que se da un enlace covalente. Actualmente hay diversos modelos y teorías que explican un enlace covalente, sin embargo históricamente esta fue la primer teoría en hacer esto.
Es importante recordar que esta teoría concuerda con los conceptos y teorías anteriores, aceptados hasta entonces. Una de estas teorías afirmaba que los electrones que participaban de enlaces están en la capa más externa del átomo. Se trata por tanto, de los electrones de valencia.
La pregunta ahora es, ¿cómo es que los electrones logran mantener dos átomos unidos?
La respuesta a esa pregunta vino de la interpretación matemática de los orbitales atómicos, que indicaban la posibilidad de combinarse formando, al final, otro orbital distinto de los anteriores y por eso no podría llamarse más orbital atómico. Así, cuando dos orbitales atómicos se combinan, el resultado final también será un orbital, sin embargo no será ya un orbital atómico.
La TEV se debe a Linus Pauling. Más conocida como modelo de las hibridaciones o de las orbitales hibridas, modelo muy utilizado en química orgánica en donde las discusiones se dan en términos de los híbridos sp, sp2 o sp3 del carbón en referencia. Linus Pauling amplía su teoría para aplicarla a los compuestos de coordinación con iones de transición, es decir con participación de las orbitales d en la hibridación, además de las s y p. En el caso de los compuestos de coordinación la hibridación se hace con participación solo de las “orbitales desocupadas” de menor energía, las LUMO. La TEV explica el magnetismo y la geometría de los compuestos de coordinación.

Esta teoría fue inicialmente propuesta por Linus Pauling en 1933 para explicar la dirección de los enlaces en los compuestos. La teoría está basada en el postulado de que la fuerza de un enlace depende de la distribución angular de las funciones orbitales involucradas.

Uno de los hechos que llevó a postular esta teoría es que el Carbono, en vez de formar tres enlaces a ángulos rectos y formar otro más débil, forma cuatro enlaces equivalentes y dirigidos hacia los vértices de un tetraedro regular. De aquí se deriva que los orbitales 2s y 2p del carbono no son usados directamente en la formación de los enlaces.

3.2.1.2  Hibridación y Geometría molecular

Se habla de hibridación cuando en un átomo se mezclan varios orbitales atómicos para formar nuevos orbitales híbridos. Los orbitales híbridos explican la forma en que se disponen los electrones en la formación de los enlaces, dentro de la teoría del enlace de valencia, y justifican la geometría las moléculas.

Orbitales

Los electrones de un átomo presentan la tendencia a ubicarse en orbitales específicos alrededor del núcleo, lo cual se enuncia en la ecuación de Schrödinger. Los detalles sobre número y orientación de electrones en cada orbital dependen de las propiedades energéticas descritas por los números cuánticos. El primer orbital, el más cercano al núcleo es el llamado 1s y solo puede ser ocupado por dos electrones. Con un solo electrón (hidrógeno) y uno con dos electrones (helio) ubican su(s) electrón(es) en este orbital.
Un átomo con 3 (litio) y cuatro (berilio) electrones tendrá que ubicar el tercer y cuarto electrón en el siguiente orbital, llamado 2s, el cual también solo acepta dos electrones.

La geometría molecular o estructura molecular se refiere a la disposición tridimensional de los átomos que constituyen una molécula. Determina muchas de las propiedades de las moléculas, como son la reactividad, polaridad, fase, color, magnetismo, actividad biológica, etc. Actualmente, el principal modelo de geometría molecular es la Teoría de Repulsión de Pares de Electrones de Valencia (TRePEV), empleada internacionalmente por su gran predictibilidad. Las geometrías moleculares se determinan mejor a temperaturas próximas al cero absoluto porque a temperaturas más altas las moléculas presentarán un movimiento rotacional considerable. En el estado sólido la geometría molecular puede ser medida por Difracción de rayos X. Las geometrías se pueden calcular por procedimientos mecánico cuánticos ab initio o por métodos semiempíricos de modelamiento molecular.
La posición de cada átomo se determina por la naturaleza de los enlaces químicos con los que se conecta a sus átomos vecinos. La geometría molecular puede describirse por las posiciones de estos átomos en el espacio, mencionando la longitud de enlace de dos átomos unidos, ángulo de enlace de tres átomos conectados y ángulo de torsión de tres enlaces consecutivos.